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Statistical dose–response analyses in radiation epidemiology
can produce misleading results if they fail to account for ra-
diation dose uncertainties. While dosimetries may differ sub-
stantially depending on the ways in which the subjects were
exposed, the statistical problems typically involve a predomi-
nantly linear dose–response curve, multiple sources of uncer-
tainty, and uncertainty magnitudes that are best character-
ized as proportional rather than additive. We discuss some
basic statistical issues in this setting, including the bias and
shape distortion induced by classical and Berkson uncertain-
ties, the effect of uncertain dose-prediction model parameters
on estimated dose–response curves, and some notes on statis-
tical methods for dose–response estimation in the presence of
radiation dose uncertainties. q 2006 by Radiation Research Society

INTRODUCTION

Radiation epidemiology is set apart by extensive efforts
to estimate a biologically relevant quantity called ‘‘dose’’
and to use resulting dose estimates to examine and quantify
dose–response relationships. As is evident in other papers
in this volume, dose estimates are subject to many sources
of uncertainty. Results from statistical analyses that incor-
rectly assume doses are measured precisely may produce
misleading results, including bias in estimated regression
coefficients, distortion of the shape of the dose response,
underestimation of uncertainty in parameter estimates, and
bias in the estimates of effect modification (1–6). In addi-
tion, statistical power may be overestimated in the planning
stages of a study (7).

This paper focuses on statistical modeling of dose un-
certainties, the bias and shape distortion in the estimation
of linear and linear-quadratic dose–response models due to
‘‘multiplicative’’ dose uncertainties, including uncertainties
that are common to many subjects, and some comments on
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statistical methods that account for dose uncertainties. Sev-
eral additional aspects of dose uncertainty that are impor-
tant but that will not be discussed here are the following:
(1) Tests and confidence intervals may be affected by dose
uncertainty, even when no significant dose–response bias is
induced. (2) If the magnitude and nature of uncertainties in
dose differ among subgroups or studies, their distorting ef-
fects may also differ, leading to biased comparisons of the
dose response among the different subgroups or studies. (3)
Uncertainties in one variable (such as the amount that a
subject has smoked in his lifetime) can induce biases in the
estimated coefficients of another variable with which it is
correlated (which could be dose of radiation).

MODELS RELATING OBSERVED AND TRUE DOSE

A typical dose–response model in radiation epidemiolo-
gy specifies the relative risk of some cancer to depend on
a linear or possibly linear-quadratic function of organ-spe-
cific dose of radiation, possibly with modifying effects of
sex, age at exposure, and attained age. If the doses were
known precisely, then common statistical tools for binary
responses or censored survival times could be used to make
inferences about the models.

We use the term observed dose to represent the available
estimate of true dose. As a starting point, we write

observed dose 5 true dose 1 error, (1)

where the term ‘‘error’’, which is commonly used for such
deviations in statistics, simply denotes the (unknowable)
difference between the observed and true dose. For the
types of problems of interest here—in which the typical
magnitude of the error is a percentage of the true dose—
a multiplicative version is usually more convenient, ob-
served dose 5 true dose 3 error factor, where error factor
is a ratio rather than a difference. This may be expressed
as Eq. (1) on a log scale,

log(observed dose)

5 log(true dose) 1 log(error factor), (2)

so many of the basic issues can be addressed in terms of
Eq. (1).
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The presence of error-prone observed doses obviously
complicates inference about the dose–response relationship.
A key requirement for ascertaining the potential conse-
quences and appropriate remedies is an understanding,
through a probability model, of the way in which true dose
and observed dose are related. Unfortunately, there are sev-
eral realistic possibilities with different consequences and
remedies and no data analysis techniques for deciding
which is appropriate. This leaves careful consideration of
the dosimetry process and a good understanding of the pos-
sible probability models as the only tools for model devel-
opment. A primary distinction in this regard is between
classical and Berkson models for uncertainty.

Classical and Berkson Models for a Single Source of
Dose Uncertainty

Two versions of the additive error model in Eq. (1) are
the following:

Classical measurement error model:

observed dose 5 true dose 1 measurement error, (3)

in which measurement error is a random variable with
mean 0, independent of true dose, and

Berkson error model:

true dose 5 observed dose 1 individual peculiarity, (4)

in which individual peculiarity is a random variable with
mean 0, independent of observed dose. Notice that the dis-
tinction is in whether the discrepancy between the true and
observed doses is independent of true dose or observed
dose. It cannot be independent of both. Since statistical in-
dependence plays a crucial role, its definition is reviewed
in Appendix A.

The classical measurement error model is ‘‘classical’’ in
its appropriateness for a true measurement error stemming
from an imprecise measuring instrument, such as an im-
precise dosimeter. The independence assumption implies
that knowledge of the value of the measurement error alone
would not help in any way to predict the size of the true
dose. In other words, the measurement error is uninfor-
mative noise. The model is appropriate for other types of
dose uncertainties if they add a similar uninformative noise
to the dosimetry process. One consequence of the indepen-
dence assumption, which is sometimes helpful for under-
standing this model, is that the variance of the observed
doses in a population of subjects is greater than the variance
of their true doses (it includes the extra noise; the variance
of the observed doses equals the variance of the true doses
plus the variance of the measurement errors).

Berkson (8) pointed out that errors arising as deviations
from an experimentally controlled variable follow a differ-
ent model and have different consequences for regression
estimation. Suppose, for example, that a setting on an X-
ray machine is used to control doses applied to laboratory
animals and that a single organ-specific radiation dose is

derived from this setting, but that the actual true doses of
animals exposed to the same setting differ because of dif-
ferent exposure distances (due to different animal sizes and
orientations during the X-ray exposure). All observed doses
corresponding to one setting will be identical, but the true
doses will vary about this due to ignored individual pecu-
liarities. This model may also be appropriate more gener-
ally whenever a single dose is used for a group of subjects,
as for example when a uranium miner’s observed dose is
taken to be the average dose for all miners in a specific
work location and period. His true dose differs from this
because of his individual peculiarity—his dose’s departure
from the average. In this model, in contrast to that for clas-
sical measurement error, the variance of true doses in a
population is greater than the variance of the observed dos-
es—because variability due to individual peculiarities has
been excluded from the latter (the variance of the true doses
equals the variance of the observed doses plus the variance
of the individual peculiarities).

One difficulty in model assessment is that dose uncer-
tainties in radiation epidemiology are rarely due to the ar-
chetypal examples for classical and Berkson errors—an im-
precise measuring device and a controlled variable. Some
helpful key words are ‘‘noise’’, ‘‘estimation error’’, and
‘‘sampling error’’ for the classical error model and ‘‘pre-
dicted value’’, ‘‘simplification’’, ‘‘ignoring individual pe-
culiarities’’, or ‘‘grouping’’ for the Berkson model. Clas-
sical measurement errors are usually present if the dosim-
etry system includes measurements for individuals or sub-
groups that are subject to error, e.g. dosimeter readings,
questionnaire responses, and environmental sampling re-
sults (and, in the case of the Japanese atomic bomb survi-
vors, individual location and shielding). Berkson errors are
usually present when doses for groups of subjects are es-
timated as average values or predicted values from some
model (such as a computer model or a regression model).
In many dosimetry systems, both classical and Berkson er-
rors are present.

Dose Reconstruction Models with Uncertain Assumptions
and Imprecise Inputs

Reeves et al. (9) and Cox et al. (10) presented a model
with a Berkson component due to the use of a group mean
as an ideal estimate of true dose and a classical component
due to the replacement of that mean by an uncertain esti-
mate. A model for radon dose in the ith house in a neigh-
borhood, for example, is

true dose 5 m 1 individual peculiarity ,i i

observed dose 5 m̂,i

where m is a neighborhood mean and is an uncertainm̂
estimate of the mean. This may be re-expressed as observed
dosei 5 true dosei 1 ( 2 m) 2 individual peculiarityi.m̂

In an extension of the model of Reeves et al., m can be
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replaced by a linear regression model for dose as a function
of a dose-predictor variable, Zi:

true dose 5 Z9a 1 individual peculiarity ,i i i

observed dose 5 Z9â,i i

where a represents a set of regression coefficients. In this
case, the two sources of uncertainty—the individual pecu-
liarity and the sampling error, —are familiar(Z9â 2 Z9a)i i

components of variability used in the construction of re-
gression prediction intervals (11). If, as is standard in linear
regression, the Zi’s are taken to be fixed at their observed
values, then the individual peculiarities are independent of
observed doses (and hence Berkson), and the sampling er-
rors are independent of true doses (and hence classical).

These relatively simple settings are intended to provide
insight into the more realistic scenario in which the ob-
served dose is from a complex dose reconstruction:

true dose 5 f (Z , P) 1 individual peculiarity , (5)i i i

ˆ ˆobserved dose 5 f (Z , P), (6)i i

in which Zi is a set of dose predictor variables (such as
distance of the ith atomic bomb survivor from the point of
detonation, i.e. exposure distance), P is a set of true values
of numerical quantities used in the dosimetry (such as ra-
diation yield of the atomic bomb), f (Zi,P) represents the
dosimetry ‘‘formula’’ for computing an estimated dose
from dose-predictor variables Zi and parameters P, and Ẑi

and P̂ are uncertain estimates or guesses of Zi and P. The
individual peculiarity again reflects the inability of the do-
simetry to predict a subject’s dose exactly, even if the exact
values of Zi and P are available, because not all factors can
be modeled.

The assessment of classical and Berkson models be-
comes more difficult in this case, partly because the effects
of the uncertainties in Ẑi and P̂ are not easily separated and
partly because the probability models are subjective. Nev-
ertheless, we suspect that the predominant effect of uncer-
tainties in judgmental parameter estimates, P̂, is a classical
error in the observed dose, as would be the case if P̂ was
an estimate based on real data (reflecting ‘‘noise’’ in expert
judgment), and that the predominant effect of uncertainty
in Ẑi is a classical or Berkson error in observed dose ac-
cording to whether the uncertainty in Zi itself is classical
or Berkson.

Both classical and Berkson models are realistic possibil-
ities for dose-predictor variables. If the atomic bomb sur-
vivor dose-predictor variable, exposure distance, for ex-
ample, is uncertain because of survivor recollection errors,
then its effect follows the classical model because the rec-
ollection errors add noise. On the other hand, if there is
uncertainty in exposure distance because researchers as-
signed a single distance to survivors in a general area, then
the uncertainty follows the Berkson model because individ-
ual peculiarities are ignored.

It should be noted that the single uncertainty P̂ 2 P is a
component of the dose error for all subjects. Stram and
Kopecky (12) consequently refer to this as a ‘‘shared error.’’
The impact may be the same for all individuals, such as
when P is the radiation yield of the atomic bomb, so that
all doses are similarly over- or underestimated. The impact
of shared errors may differ among individuals, though, such
as when P is the exact detonation location of the bomb or
the rate of radiation intake per volume of milk consumed
by a subject in a nuclear fallout study.

BIASES INDUCED BY MULTIPLICATIVE CLASSICAL
AND BERKSON DOSE UNCERTAINTIES IN LINEAR

AND LINEAR-QUADRATIC DOSE–RESPONSE MODELS

Historically, research into the statistical problem of re-
gression with uncertain explanatory variables has focused
on ordinary linear regression with additive measurement
errors. It is well known that the estimated slope in simple
linear regression is biased toward zero if the uncertainty
follows the classical model and it is unbiased if the uncer-
tainty follows a Berkson model (13–15). For nonlinear re-
gression and non-additive error structures, these statements
are roughly true, but the degree of roughness may be con-
sequential (3).

This section details the principal forms of bias in dose–
response estimation due to multiplicative Berkson and clas-
sical errors. Some attention is given here to the curvature
that may be induced or masked by dose uncertainties.
While most radiation epidemiology studies have insuffi-
cient power for detecting and quantifying curvature, there
are nevertheless two reasons for its examination. First, the
extent to which an observed dose–response line has a slope
that is larger or smaller than a true dose–response line de-
pends on a combined effect of an induced curvature and
the degree of skewness in the population of true doses, as
will be shown. Second, the practice of adjusting estimated
cancer risks by a dose and dose-rate effectiveness factor
(DDREF) is motivated by a belief in upward dose–response
curvature, as observed in animal studies. A natural question
is whether such upward curvature, in the A-bomb survivor
data for example, could be present but masked by Berkson
or classical uncertainties.

Biases in Linear Dose–Response Models Due to Single
Sources of Multiplicative Uncertainty

Of particular interest in radiation epidemiology are bi-
nary regression models and hazard regression models (i.e.
dose–response models for age-specific incidence or mor-
tality rate models estimated from subject survival times)
that are linear or linear-quadratic functions of dose. Con-
sider first a binary response variable representing cancer
incidence or mortality, and suppose that the probability of
this response is a linear function of true dose,

Pr(response z true dose) 5 a 1 b 3 true dose. (7)
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Then the observed dose–response model, i.e. the regression
of the binary response on the observed dose, must be

Pr(response | observed dose)

5 a 1 b Ave(true dose | observed dose), (8)

where Ave(true dose z observed dose) is the conditional
mean of true doses for the subpopulation of subjects with
a given value of observed dose. This follows from elemen-
tary properties of conditional means; see also ref. (4). Using
more sophisticated arguments, a similar statement can be
made about hazard models: If a 1 b 3 true dose is a model
for the hazard rate as a function of true dose, and if the
disease outcome of interest is fairly rare, then the hazard
rate as a function of the observed dose is approximately a
1 b Ave(true dose z observed dose) (16–18).

Because of these results, the bias induced by the dose
uncertainties can be investigated by examining the extent
to which Ave(true dose z observed dose) differs from ob-
served dose. If Ave(true dose z observed dose) 5 observed
dose, then the coefficient of observed dose in Eq. (8) is the
same as the coefficient of true dose in the model of interest,
Eq. (7), so an essentially unbiased estimation procedure us-
ing the observed doses will yield essentially unbiased es-
timates of the coefficient of interest. For the uncertainty
models of interest here, however, Ave(true dose z observed
dose) ± observed dose. (It is important to note that this
inequality is not an indictment of the dosimetry process,
but rather a feature of conditional means in bivariate dis-
tributions, related to the notion of ‘‘regression toward the
mean’’, which is present even when the dosimetry is ac-
curate.)

Multiplicative Berkson uncertainties may inflate the
dose–response slope. Consider the following multiplicative
Berkson model:

true dose 5 observed dose 3 peculiarity factor, (9)

or equivalently

log(true dose) 5 log(observed dose)

1 log(peculiarity factor), (10)

with the assumptions that the logs of the individual pecu-
liarity factors follow a normal distribution with mean 0 and
variance (‘‘B’’ for Berkson), and are independent of ob-2sB

served dose. The normality assumption is used for conve-
nience here to demonstrate the effect in a setting where it
can be derived with mathematical statistics. In fact,

Ave(true dose | observed dose)
2s /2B5 e 3 observed dose, (11)

so if the slope in the ‘‘true’’ dose–response model is b, the
slope in the observed dose–response model is b [fol-2s /2Be
lowing from Eq. (8), for example]. The bias induced by the
Berkson errors in the estimated coefficient of true dose is
therefore ( 2 1)b. A belief that true and observed doses2s /2Be
typically differ by about 30% (a coefficient of variation of

0.3, which translates to sB 5 0.29), for example, implies a
4% overestimation of the coefficient of dose. This bias is
a consequence of the assumption that the mean of the log-
arithms of the peculiarity factors in Eq. (10) is zero, which
implies that the mean of the peculiarity factors in Eq. (9)
is greater than 1. (The median of the peculiarity factors is
1. The mean is greater than the median in a positively
skewed distribution.) It is debatable whether the correct
specification is that the mean of this peculiarity factor is 1
or whether the mean of the logarithm of the peculiarity
factor is 0, but we believe the latter is usually more natural.
(For a heuristic argument, suppose the observed doses are
either equal to the true doses, off by a factor of 2, or off
by a factor of 3, so that the peculiarity factors can be 1/3,
1/2, 1, 2 and 3. Notice that the median of these numbers is
1 but that the mean is larger. The symmetry is reflected on
the log scale, for which the mean and median are both
zero.) In any case, this bias—if present—may be handled
rather simply by redefining observed doses as the right hand
side of Eq. (11), as discussed in a later section.

Multiplicative classical uncertainties usually induce
downward curvature. Suppose now that

log(observed dose) 5 log(true dose)

1 measurement error,

where measurement error is taken to be independent of true
dose, and normally distributed with mean 0 and variance

(‘‘C’’ for classical). Whereas the Berkson error generates2sC

a probability distribution of true doses for a given observed
dose, thus making the computation of Ave(true dose z ob-
served dose) straightforward, the classical error generates a
probability distribution for observed doses for a given true
dose. Because of this, consideration of Ave(true
dose z observed dose) for assessing bias using Eqs. (7) and
(8) is possible only if additional assumptions are made
about the distribution of true doses in the population of
study subjects. If, for example, the true doses are lognor-
mally distributed in a population of subjects, so that
log(true dose) is normal with variance s2, then

Ave(true dose | observed dose)
2 212R R5 {Ave(true dose)} (observed dose) , (12)

where R2 5 s2/(s21 ) (which is the squared correlation2sC

of log true dose and log observed dose, and is between 0
and 1) and Ave(true dose) is the mean of the true doses in
the study population. By inserting Eq. (12) in Eq. (8), it is
evident that while the true dose–response relationship may
be linear, the apparent relationship based on observed doses
will be curved. The second derivative of the expression for
Ave(true dose z observed dose) in Eq. (12) with respect to
observed dose is negative, indicating that downward cur-
vature is induced, as has also been shown in refs. (9) and
(19).

Figure 1 provides an illustration of the effect of multi-
plicative classical uncertainties on simulated data. True
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FIG. 1. Illustration of biases induced by dose uncertainties that follow the multiplicative classical model. Panel A shows 86,000 hypothetical true
doses chosen to roughly match the reported doses of the Japanese A-bomb survivors, and observed doses simulated by multiplying these by lognormally
distributed error factors. The curve for Ave(true dose z observed dose) is the result of a polynomial fit to the regression of true on observed dose. Panel
B shows a hypothetical excess relative risk model, Excess Relative Risk 5 0.5 3 true dose (solid line), and two associated observed excess relative
risk models, 5 0.5 3 Ave(true dose z observed dose), corresponding to measurement error coefficients of variation of 30% and 50%.

doses were simulated from a skewed distribution that
roughly matches the doses for the Japanese A-bomb sur-
vivors, based on Table 2 in ref. (20). Observed doses were
generated as the products of these simulated true doses and
computer-generated, lognormally distributed measurement
error factors. The plot in panel A shows that Ave(true
dose z observed dose) is curved. The effect on the shape of
the dose–response curve is illustrated in panel B, demon-
strating the potential for incorrectly concluding that there
will be downward dose–response curvature if multiplicative
classical measurement errors are ignored.

A question then is what bias results from the estimation
of a dose–response line if multiplicative classical measure-
ment errors are ignored. Notice in panel B of Fig. 1 that a
line that connects the zero point of the graph to the dashed
or dotted curves will have a slope less than that of the true
dose–response line over the region of large doses and a
slope slightly greater than that of the true dose–response
line over the region of small doses (less than 0.75 Sv,
roughly). An estimate of a dose–response line estimates
something like a weighted average of these individual lines
at all observed doses. Since a large proportion of the doses
are ‘‘small’’, it is possible, depending on the degree of
skewness of true doses, that the estimated line might ac-
tually have a positive rather than a negative bias. [More

formally, at an observed dose equal to some value D, the
slope of the line tangent to the observed dose–response
curve is R2{Ave(true dose)} D b. When D is Ave(true2 212R R 21

dose), this slope is R2b, which is less than b. As D gets
smaller, though, the slope gets larger and may be greater
than b.]

Can Multiplicative Uncertainties Mask or Distort Real
Dose–Response Curvature?

A separate question is whether Berkson and classical errors
may mask or distort some underlying curvature that is indeed
present in the true dose–response relationship. Suppose that
the true regression (binary or hazard) is a 1 b 3 true dose
1 g 3 true dose2. Then the observed regression is

a 1 b 3 Ave(true dose | observed dose)
21 g 3 Ave(true dose | observed dose),

where Ave(true dose2 z observed dose) is the mean value of
true dose2 for a subset of subjects with the same value of
observed dose.

Multiplicative Berkson uncertainties increase apparent
curvature. For the lognormal Berkson model in Eq. (10),
Ave(true dose2 z observed dose) 5 3 observed dose2.22sBe
Thus the bias in the estimated coefficient of the quadratic
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FIG. 2. Illustration of curvature masked by dose uncertainties that
follow the multiplicative classical model. The plot shows a hypothetical
linear-quadratic (LQ) excess relative risk model, Excess Relative Risk 5
0.2 3 true dose 1 0.2 3 true dose2, and two observed excess relative
risk models, 5 0.2 3 Ave(true dose z observed dose) 1 0.2 3 Ave(true
dose2 z observed dose) induced by lognormal measurement error factors
with coefficients of variation of 30% and 50%, on simulated data. The
values of Ave(true dose z observed dose) were determined as in Fig. 1; the
values of Ave(true dose2 z observed dose) were similarly obtained by poly-
nomial regression.

term will be ( 3 21)g if the Berkson uncertainties are22sBe
ignored. Since the term in parentheses is positive, the co-
efficient of the quadratic term in the observed regression is
greater than the one in the true regression, so ignoring mul-
tiplicative Berkson uncertainties may cause one to conclude
that there is a greater degree of curvature than in fact really
exists. A coefficient of variation in the Berkson errors of
30%, for example, corresponds to a 19% overestimation of
the magnitude of the quadratic coefficient.

Multiplicative classical uncertainties reduce apparent
curvature. A simulated example is used to demonstrate the
effect of multiplicative classical uncertainties on the cur-
vature in a true linear-quadratic dose response, using the
same simulated true and observed doses of Fig. 1, but as-
suming an underlying linear-quadratic relative risk model
(Excess relative risk 5 0.2 3 true dose 1 0.2 3 true
dose2). Shown in Fig. 2 is this hypothetical true relative
risk model and the observed relative risk models induced
by lognormal measurement error factors with coefficients
of variation of 30% and 50%. If there is underlying dose–
response curvature like that demonstrated by the solid line,
then ignoring multiplicative classical measurement errors
may lead one to conclude that the dose response is more
like the dotted or dashed line. In this example, the true
curvature is masked if multiplicative classical measurement
errors are not accounted for. Some formal results are pro-
vided in Appendix B for the case that the true doses are
lognormally distributed, leading to similar conclusions.

Shared Uncertainties from Imprecise Model Terms

We now consider the model of Eqs. (5) and (6) for the
specific case that the observed doses come from a simple
linear regression prediction on the log scale,

log(true dose ) 5 a 1 a Z 1 model error ,i 0 1 i i

ilog(observed dose ) 5 â 1 â Z ,0 1 i

where Zi is a dose-predictor variable for subject i; the a’s
are regression coefficients; and the ’s are their estimators,â
derived independently from a ‘‘calibration’’ data set. Such
a model may be appropriate for organ-specific doses to pa-
tients clinically exposed to X rays, with Z representing X-
ray machine settings and with the ’s being estimates fromâ
studies of ‘‘phantoms’’ subjected to similar X rays [see, for
example, ref. (18)], but the intent here is primarily to ex-
amine this model for understanding analogous effects in
more complex dose reconstructions. As discussed previ-
ously, the model error follows the Berkson model and the
component of dose uncertainty due to estimation of the ’sâ
follows the classical model. These classical measurement
errors are ‘‘shared’’ in the sense that the same term 2â
a appears in the error term for all individuals, although with
different impacts depending on the value of Zi.

Appendix C contains some theoretical results that show
a combined effect of the two uncertainties to be similar to
what would be expected from the results for Berkson and
classical errors individually. In particular, if there is no un-
certainty in the ’s, then R2 is 1 and the bias reduces to Eq.â
(11) with a Berkson effect alone. The effect of uncertainty
due to imprecision in the estimated prediction equation has
much the same form as Eq. (12), inducing downward cur-
vature.

For illustration, computer simulations were performed
with ’s estimated from an independent calibration data setâ
consisting of m pairs of Z’s and true doses for several choic-
es of m. Figure 3 shows the percentage bias in an estimated
slope of a binary regression model estimated from a pri-
mary data set of 5000 binary responses and Z’s. The ob-
served doses were computed as 0 1 1Z, using the esti-â â
mated ’s from the independent calibration data set. Furtherâ
details about the simulation conditions are provided in Ap-
pendix D.

For large enough m, only the Berkson bias is present so
that the estimated slope will have expectation , which2s /2Be
is 1.13b for the conditions here (hence the horizontal line
at 13% in Fig. 3). For smaller m’s, there is an additional
positive bias, which can be substantial. The reason that the
bias is positive, in contrast to the attenuation typically ex-
pected from classical measurement errors, is the prepon-
derance of subjects with lower than average doses, as dis-
cussed earlier. Broad conclusions cannot be drawn from this
simulation, but the substantial biases and the prevalence of
real data problems with analogous structure suggest a need
for further study, including an understanding of the effect
of the correlated measurement errors on estimation tech-
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FIG. 3. Simulation results showing the bias in the estimated slope of
a linear dose–response model for a binary response, when observed doses
are predicted values from a regression of true dose on a dose-predictor
variable Z, with estimated coefficients of the prediction model estimated
from an independent calibration data set of size m. Shown is the mean
bias, over a large number of simulations, as a percentage of the true slope.
The horizontal dashed line is at 13%, the expected bias due to the Berkson
uncertainties alone, from Eq. (A2), Appendix C.

niques and an understanding of the effect of the shared
classical error on the estimation of linear-quadratic models.
An investigation of shared uncertainties along different
lines and for other consequences was given in ref. (12).

SOME NOTES ON STATISTICAL METHODS
FOR INFERENCE IN THE PRESENCE

OF DOSE UNCERTAINTY

There are several approaches for estimation that account
for dose uncertainties. The method of maximum likelihood
(or maximum partial likelihood for censored survival times)
is theoretically optimal in several ways, but it requires that
all probability distributions involved be specified complete-
ly and, for the types of problems considered here, requires
some nontrivial computer programming. General references
are (2), (3) and (6). An attractive alternative is to apply
essentially the method that would have been appropriate if
doses were known precisely but with the missing true doses
replaced by Ave(true dose z observed dose). This method,
which has its roots in the work by Armstrong (21) for gen-
eralized linear models and Prentice (16) for proportional
hazard regression, was popularized for logistic regression
by Rosner, Willet and Spiegelman (22) and was extended
and studied as the regression calibration method (3).

Radiation epidemiology studies that have explicitly dealt
with radiation uncertainties have generally used some ver-
sion of one of these two methods. The regression calibra-
tion method has been used to take account of classical er-
rors in analyses of A-bomb survivors (4), persons exposed
to radon in houses in Sweden (23) and China (24), and

Colorado Plateau uranium miners exposed to radon (25).
Errors in estimates of exposure to radon in houses have
also been investigated in a study in Southwest England (9,
26) using an approximate likelihood analysis, with char-
acteristics similar to regression calibration. In addition to
accounting for classical error, this study accounted for the
Berkson error resulting from the use of imputed values for
addresses without radon measurements. Bayesian approach-
es (which extract information from the data in the same
way as maximum likelihood) were used by Thomas (27)
in a case–control study of leukemia in Utah residents ex-
posed to radioactive fallout from atmospheric nuclear tests
and also in a cohort study of thyroid disease in persons
exposed to fallout as children and by Mallick et al. (28)
for studying thyroid disease in persons exposed to fallout
from the Nevada test site. Schafer et al. (18) investigated
both maximum likelihood and regression calibration in a
reanalysis of thyroid cancer risk in Israeli tinea capitis pa-
tients treated with X rays, finding little difference between
the two.

Accounting for dose measurement error increased the es-
timated risk coefficients in most of the studies noted above
(about 10% for A-bomb survivors, 50–100% in the resi-
dential radon studies, 60% for the Colorado miners, 30%
for the Utah fallout leukemia study, and 100% for the Utah
fallout thyroid study). The relative uncertainty was also in-
creased in studies that used various approaches to address
this (9, 24, 27, 28). In the Colorado miner study, taking
account of error decreased both the magnitude and the sta-
tistical significance of the dose-rate effect. In this study,
errors in exposures received at high dose rates were larger
(on an additive scale) than those received at low dose rates.
In the Hanford Thyroid Study, taking account of error re-
duced the estimated power in a specified situation of inter-
est from 0.80 to 0.71 (12). Adjustment for measurement
error in the tinea capitis study had only a negligible effect
on dose–response estimation or on inferences on the mod-
ifying effects of age at first exposure, time since exposure
and other factors (18, 29).

Because of the results showing that the observed linear
dose–response models for binary responses and hazard
functions have the same form as the true dose–response
models with true dose replaced by Ave(true dose z observed
dose), it follows that maximum likelihood and regression
calibration produce equivalent estimates for these special
cases. If the dose response follows a linear-quadratic func-
tion, then the equivalence still holds if, in using regression
calibration, true dose2 is replaced by Ave(true
dose2 z observed dose).

The equivalence is true only if the conditional means,
Ave(true dose z observed dose), are known exactly, though,
which is usually not the case. A previous section highlight-
ed the potential dangers of assuming that Ave(true
dose z observed dose) is known when in fact it is an estimate
based on an estimated prediction equation. This may be a
fine point, since using an estimate of Ave(true
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dose z observed dose) is a substantial improvement over ig-
noring uncertainties, but additional study for further refine-
ment of this method is warranted.

Notice that for multiplicative Berkson uncertainties fol-
lowing the lognormal model, Ave(true dose z observed dose)
5 observed dose, so that the regression calibration2s /2Be
may be handled rather simply with knowledge of the Berk-
son error variance. For classical measurement errors, as dis-
cussed earlier, Ave(true dose z observed dose) is a more
complex quantity that depends crucially on the distribution
of true doses in the study population. See ref. (30) for a
fuller discussion of this issue and an approach for estimat-
ing Ave(true dose z observed dose) that takes this distribu-
tion into account but without a need to specify a particular
form for it.

There are two modeling extremes in applying regression
calibration when observed dose is the result of a complex
dose reconstruction process. One is to attempt to model the
dose reconstruction entirely, accounting for each piece of
the dose reconstruction and the uncertainties that arise from
each piece, and the other is to simply lump all uncertainties
into either a classical or Berkson category and speculate on
their overall variances. Examples of the former are in refs.
(12) and (31) and of the latter in ref. (4). Sensitivity anal-
yses are important in both approaches.

A useful and popular tool for detailed modeling of dose
reconstruction is computer simulation, in which a simulated
distribution of possible doses for an individual emerges
through simulated uncertainties at various stages of the
dose reconstruction process (31), permitting the estimation
of Ave(true dose z observed dose) for use in the regression
calibration approach. This has the advantage that effects of
shared uncertainties are handled automatically. There is a
potential danger in mistaking classical and Berkson errors,
perhaps more so than in other analyses, because of the ease
in generating pseudo measurement errors according to one
model and the potential confusion between the population
distribution of true dose given observed dose and a hypo-
thetical distribution of true dose given observed dose for a
particular individual. Because of the overall attractiveness
of the simulation approach along with the potential pitfalls
in keeping various probability distributions straight, further
study and clarification of the use of simulated distributions
of possible true doses for regression calibration and for
likelihood or Bayesian analysis [as suggested in ref. (32)]
are warranted. A recent discussion of this approach is in
ref. (33).

DISCUSSION

This paper emphasizes the multiplicative versions of the
classical and Berkson dose uncertainty models. The clas-
sical/Berkson modeling discussion has been explained
many times previously in the context of radiation epide-
miology [for example, in ref. (34)]. Further conceptual clar-
ification is provided here for thinking about the distinction

in practice by noting that the formal independence assump-
tions imply that the classical model is appropriate when the
uncertainty is due to uninformative noise and that the Berk-
son model is appropriate when the uncertainty is due to the
ignoring of individual peculiarities.

The primary effect of multiplicative Berkson uncertain-
ties on linear and linear-quadratic dose–response models is
a possible exaggeration of dose–response curvature. The
primary effects of multiplicative classical uncertainties are
the introduction of downward curvature and the masking
of upward curvature if it is present in the dose–response
relationship. The effect of multiplicative classical uncer-
tainties on linear dose–response estimation is difficult to
generalize as it depends on the skewness of true doses in
the study population, in addition to the induced curvature.

The use of Ave(true dose z observed dose) as a substitute
for the unavailable true dose has been an important part of
recent statistical analyses in radiation epidemiology, offer-
ing substantial improvement over naı̈ve analyses that ignore
dose uncertainties. Given that the available Ave(true
dose z observed dose) is only an estimate (or based largely
on imprecise expert judgment), though, further improve-
ment may be possible by accounting for the effect of the
classical errors involved in estimation or speculation of
common model terms and the effects of these shared un-
certainties on the statistical inferential tools used. Related
to this are similar issues involved when Ave(true
dose z observed dose) is determined by simulation.

APPENDIX A

Definition of Statistical Independence

Let X and W represent two random variables, such as the true dose
and the measurement error (in the observed dose) for a randomly selected
subject in a population of exposed subjects in an epidemiological study.
Use of the term ‘‘random variables’’ implies that numerical values for X
and W would result from random selection. We may consider their pos-
sible and likely values through a probability distribution. The marginal
probability density for W, f(w), describes the probability of values that
W takes in the population, without regard to values of X. The conditional
probability density, f(w z X 5 x), refers to the probability distribution of
W for all subjects whose value of X is x. W and X are independent if
f(w z X 5 x) 5 f(w). In other words, W and X are independent if knowledge
of the numerical value for X provides no information for refining knowl-
edge about the possible and likely values of W. One consequence of
independence is that the conditional mean of W given X is equal to the
marginal mean: Ave(W z X 5 x) 5 Ave(W).

APPENDIX B

Effect of Multiplicative Classical Uncertainties on Estimation of a
Linear-Quadratic Dose–Response Model

In the classical model with lognormal measurement error factors and
lognormal true doses, Ave(true dose2 z observed dose) 5 {Ave(true
dose2)} (observed dose2) . It can be inferred from this and Eq. (12)2 212R R

that

Ave(y | observed dose)
2 212R R5 a 1 bm (observed dose)

2 212R 2 R1 gm (observed dose ) , (A1)2
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where m and m2 are the mean and second moment [i.e. Ave(true dose2)]
of true dose in the population of subjects. A quadratic approximation to
Eq. (A1) (obtained by expanding the second term about observed dose
5 m and expanding the third term about observed dose2 5 m2) indicates
both a multiplicative and an additive (negative) effect on the coefficient
of the squared term. If b and g are both positive then the coefficient of
the squared term in the observed regression will be reduced from g both
by a factor less than 1 and by an additional subtracted amount. Thus the
apparent curvature in the observed regression will be less than the true
(upward increasing) curvature and may even be curved in the opposite
direction.

APPENDIX C

Bias Due to Dose Estimates Arising from an Estimated Regression
Prediction Equation

If, in the regression prediction model, the Z’s, the model errors and
the ’s are all normally distributed, then it can be shown thatâ

Ave(true dose | observed dose)
22 2 2R s /2 12R RB5 e {Ave(true dose)} (observed dose) , (A2)

where is the variance of the (Berkson) model errors, and2sB

2a s1 Z2R 5 .
2[a 1 var(â )]s 1 var[â 1 â Ave(Z)]1 1 Z 0 1

APPENDIX D

Details of Simulation

In each run of the simulation displayed in Fig. 3, a primary data set
was generated as follows: 5000 Z’s were generated from a normal distri-
bution with mean 0 and standard deviation 1, 5000 log true dose’s were
generated from a normal distribution with mean 21.6 1 0.75Z and stan-
dard deviation 0.5, and 5000 binary responses were generated as Ber-
noulli with probability 0.1 1 0.05 true dose. A calibration data set was
also simulated: m Z’s were generated from the same normal distribution
as in the primary data set and m true doses were generated from the same
normal distribution as in the primary data set. With these sets of simulated
variables, the following steps were applied: The regression of log true
dose on Z was estimated by least squares from the calibration data set,
the resulting estimated coefficients were applied to the Z’s in the primary
data set to arrive at predicted doses (which serve as the observed doses),
and the dose–response regression coefficients were estimated by maxi-
mum likelihood estimation of the binary responses on these observed
doses. These simulation runs were repeated 10,000 times for m 5 4 and
5; 1000 times for m 5 10, and 500 times for m 5 15, 20, 40, 100, 400,
1000 and 5000. For each of these, the mean bias was computed as the
mean of the Monte Carlo distribution of the slope estimates in the binary
dose–response regression minus the true value (0.05).
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